ENGINEERING CHEMISTRY With effect from 2019-20

(Common for all branches)

Course	Code - Cate	gory: 113/123	3	Credits:3	
L 3	Т 0	Р 0	E 1	0 4	Sessional Marks:40
End Ex	am: 3 Hours				End Exam Marks:60

Course Objectives:

- > To familiarize Engineering Chemistry and its applications
- > To provide knowledge on problem associated with impure water and various treatment technologies
- > To train the students on the principles and applications of electrochemistry,
 - > To introduce nano, smart and composite materials

Course Outcomes:

CO No.	Statement	Marks Allotted							
		Mid-1	Assign-	Assign-	CT/ Quiz	CT/ Quiz	Total Marks		
CO-1	Identify the problems associated with raw water used in drinking & boilers and solve the problems by using ion exchange, desalination technologies for raw water treatment	15	10		10		35		
CO-2	Select anodic and cathodic materials used in batteries/ cells based on concepts of electrode potentials to meet the demands of alternate energy sources	15		7	8		30		
CO-3	Apply protective coatings or by modifying environment a metal or structure can be protected from corrosion	10		3	2		15		
		Marks Allotted							
		Mid-2	Assign-	Assign-	CT/ Quiz	CT/ Quiz	Total Marks		
CO-3	Apply protective coatings or by modifying environment a metal or structure can be protected from corrosion	10	3		3		16		
CO-4	Predict the electrical conductivity of solids based on band theory and selection of ceramic materials for construction, furnace design	15	7		7	3	32		
CO-5	Describe the principle and instrumentation of SEM and TEM used for characterisation of nanomaterials. Identify composite and smart materials for automobiles and sensor application, repectively.	15		10		7	32		

<u>CO-PO-PSO Mapping</u> (Low-1, Medium-2, High-3)

PO/CO's	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	2	1				1	1	1	1			1		
CO2	2	1				1	2	1	1			1		
CO3	2	1				1	1	1	1			1		
CO4	2	1				1			1			1		
CO5	2	1				1	1		1			1		

UNIT I

SYLLABUS

12 Periods

Water Chemistry: Introduction- Impurities in water; Hardness of water – types of Hardness, units and calcium carbonate equivalents, problems, disadvantages of hard water; Boiler troubles- Scale & Sludge formation, prevention- Internal treatment - (Phosphate, Carbonate and Calgon conditioning) ,Caustic embrittlement

Water treatment techniques: Softening of water by ion exchange method- Principle, Process, advantages; Desalination of water – Reverse Osmosis and Eelectrodialysis; WHO standards for drinking water, Municipal water treatment - Sedimentation, Coagulation, Chlorination-Break point chlorination.

Learning Outcomes:

At the end of this unit the student will be able to

- List the differences between temporary and permanent hardness of water (L1) •
- **Illustrate** the problems associated with hard water (L2) •
- **Explain** the principles of reverse osmosis, electrodialysis and municipal water treatment processes (L2)
- **Solve** problems associated with hard water scale and sludge (L3) •

UNIT-II

10 Periods

Electrochemical cells: Electrode potential, Nernst equation, reference electrodes-SHE and Calomel electrode, Electrochemical series, Electrochemical cell, Cell potential; Primary cells - Dry cell, alkaline battery, hydrogen-oxygen, methanol fuel cells – working of the cells; Secondary cells – lead acid, lithium ion batteries- working of the batteries including cell reactions.

Solar Energy: Photovoltaic cell -Working & applications, Photo galvanic cells with specific examples

Learning Outcomes:

At the end of this unit the student will be able to

- Apply Nernst equation for calculating electrode and cell potentials (L3)
- **Explain** the theory and construction of battery and fuel cells (L2)
- Identify the applications of solar energy (L2)
- **Construct** different cells (L3)

UNIT – III

Corrosion Chemistry: Definition, Theories of corrosion-Chemical corrosion, metal oxide formation, Pilling Bedworth rule, Electrochemical theory of corrosion, differential aeration cell corrosion, galvanic corrosion; Factors affecting corrosionPrevention and control: Protection- cathodic protection, Corrosion inhibitors, electroplating of Copper and electroless plating of Nickel, organic coatings-paint and varnish

Learning Outcome:

At the end of this unit the student will be able to

- Apply Pilling Bedworth rule for corrosion and corrosion prevention (L3)
- **Demonstrate** the corrosion prevention methods and factors affecting corrosion (L2)
- **Develop** the corrosion resistant materials for industrial and marine applications (L5)
- **Identify** different organic coatings (L3)

UNIT IV

Semiconducting Materials: Band theory of solids – band diagrams for conductors, semiconductors and insulators, Role of doping on band structures. Organic semiconductors and applications.

Ceramic Materials: Cement - raw materials, Manufacturing process, Setting and hardening of cement (hydration and hydrolysis equations); Refractories- classification; engineering applications of ceramics

Learning Outcome:

At the end of this unit the student will be able to

- **Explain** the manufacturing of portland cement (L2)
- Enumerate the reactions at different temperatures in the manufacture of cement (L2)
- **Describe** the mechanism of conduction in conducting polymers (L2)
- List out the applications of ceramics (L2)

UNIT V

Nanomaterials: Introduction to Nanomaterial- nanoparticles, nanocluster, carbon nanotube (CNT); Chemical synthesis of nanomaterials- sol-gel method; Characterization- Principle and applications of Scanning electron microscope (SEM) and Transmission electron microscope (TEM).

Polymer Composites: Definition, constituents of composites, types - Fiber Reinforced Plastics, Particulate composites, Layer composites, engineering applications of composites;

Smart polymers: Introduction, types of smart polymers and applications

Learning Outcome:

At the end of this unit the student will be able to

• **Classify** nanomaterials (L2)

10 Periods

10 Periods

10 Periods

- **Explain** the synthesis and characterisation of nanomaterials (L2)
- **Explain** the different types of composites and their applications (L2)
- Identify different types of smart materials (L2)

Prescribed Text Book

1. **P.C. Jain and M. Jain** "*Engineering Chemistry*", 16th edition, - DhanapathiRai& Sons, Delhi. 2015.

2. **S.S. Dara** "A *text book of Engineering Chemistry*", 15th edition, S. Chand& Co. New Delhi, 2014.

Reference books

- 1. **O.G.Palanna** "*Engineering Chemistry*" Tata McGraw Hill Education pvt ltd, New Delhi, 2009.
- V.Raghavan" A Material Science and Engineering", 5th edition, Printice Hall India Ltd, 2011.